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Low-Frequency, Bottom-Interacting Pulse
Propagation in Range-Dependent Oceans

MICHAEL D. COLLINS

(Invited Paper)

Abstract—An asymptotic-numerical model for low-frequency, bot-
tom-interacting pulse propagstion in the ocean is derived. The model
works in the time domain using an approach analogous to the parabolic
equation method that is commonly used in the frequency domain. The
mode} handles depth and range varistions in the speed of sound, den-
sity, and attenuation. The attenuation is assumed to depend linearly on
frequency in the sediment. The accuracy of the model is demonstrated
with a benchmark.

Keywords—parabolic, pulse, attenuation, density.

I. INTRODUCTION

ANGE-DEPENDENT propagation problems can be
ived efficiently with the parabolic equation (PE)
method. It is most useful for low-frequency problems be-
cause the number of operations required for the numerical
solution of the PE increases with the frequency squared for
two-dimensional problems. The PE method was first applied
to underwater acoustics by Tappert [1], who also provided a
historical account of the PE method. For this application, the
PE method has been highly developed. In its present state, it
can handle density variations [2]-[4], range dependence [5],
three-dimensional variations [6]-(8], and wide-angle propa-
gation [9], [10]. The accuracy of the PE method has been
demonstrated with many benchmark comparisons using nor-
mal mode and other results [11].

Puise propagation problems can be solved with frequency-
domain methods by solving for one frequency at a time and
summing the results. The PE method [12], [13], the fast-field
program [14], and the WKB method [15], [16] have been used
in this fashion. These approaches can probably be improved
substantially for broadband pulses by working in the time do-
main because a significant amount of effort must be devoted to
managing the component frequencies and performing the sums
with the frequency-domain approach. Since range-dependent
problems are frequently of interest, a time-domain approach
analogous to the PE method would be very useful. Two such
models exist, the nonlinear progressive wave equation (NPE)
[17], which is an initial value problem in time, and the time-
domain parabolic equation TDPE [18]-[20], which is an initial
value problem in range. In contrast to the PE method, these
models have not been fully developed.
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The need for the development of bottom interaction capabil-
ity into these modes was the motivation for the present study.
A robust numerical solution was developed for the NPE [17],
and it seems more natural to march a solution of the wave
equation in time rather than range. Thus, we work with the
NPE rather than the TDPE. Since the nonlinear term in the
NPE is dropped, we do not adhere to the terminology for
this model and refer to the linear version of the NPE as the
progressive wave equation (PWE). The number of operations
required for the numerical solution of the PWE increases with
the frequency cubed. Thus, this model is best suited to handle
low-frequency problems.

II. DertvaTION OF THE PWE

We neglect attenuation for now and begin with the following
wave equation due to Bergmann [21] for the acoustic pressure

P:
1 1 %P
ov (p VP) c? ar?
where ¢ is time, ¢ is sound speed, and p is density. Azimuthal
dependence is ignored, and cylindrical coordinates are used
with z being the depth below the ocean surface and r being
the horizontal distance from a point sound source at z = Zj.
The dimensions of the independent variables have been re-
moved using the factors ¢g = ¢(20).p0 = 0(2o), and the
characteristic time scale 7 of the source function F(¢). Cylin-
drical spreading applies for large r because the ocean acts
as a waveguide. Thus, spreading can be handled by defining
p = r'2P. We let ry » 1, assume | 3p/3r |« | 3p/3z |, and
approximate (1) for r > ry by
p 1 ¥p
392 padzdz At c?an.
Following the approach used to derive the TDPE and the NPE,
we introduce a reference frame moving outward at the refer-
ence speed o with the new independent variable s = r — cof
and new dependent variable
u(s,z,t) = p(s + cot, 2. 0).
With these definitions, (2) becomes

1)

(2)

(3)

Fu _ldpdu () \Pu
az2  p 4z 3z c? / as?
2c0 O’y 1 du
a oo doar W
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The PE method is based on the small-angle asymptotic
limit. Long-range propagation in the ocean results in nearly
vertical wavefronts due to the fact that wide-angle rays are
not trapped by the oceanic waveguide. In other words, energy
propagation is limited to within the angle & of the horizontal,
where € = tan’® « 1. For the plane wave

u(s,z,t) = flscose + zsing + (coso — )cet]  (8)

with |¢| < ®, we observe that du/dt = O(e) and du/dz =
0(61/2)_

We assume that ¢ = ¢+ O(e), p(r, 2) = p'(r{, zeVH),r >
ro = O(e™"), and cgr/d = O('’?), where p’ is inde-
pendent of €,¥ <€ ¢, and d is the ocean depth. Using the
scales suggested by the above discussion, we assume that
u(s,z,t) = u'(s,ze'’?, te), where u’ is independent of . This
results in du/3t = O(e) and du/3z = O(e'’?). An analogous
scaling is commonly used in the frequency domain for deriv-
ing the PE [1], [4]. To leading order in e, the approximation

madc iz going from (1) to (2) is valid and (4) becomes
co(du 13p du Pu  u
2 (azz pazaz )T W5a Yo =0 ©

We assume u has compact support in s for all time and inte-
grate (6) with respect to s to obtain the PWE

(2
.\ 8z°
III. Tue Loss TErRM

Letn = (40xlog,,e) ' and B be the attenuation in decibels
per wavelength with 8 = O(e). For the circular frequency w,
the complex wavenumber K = k(1 + inf3) is assumed in the
sediment, where the O(1) wavenumber ¥k = w/c. This for-
mulation is used to model attenuation that increases linearly
with frequency, which is in agreement with experimental re-
sults [22}-[24] involving various materials and frequencies.
The linear dependence has been challenged [25], [26]. How-
ever, the model we derive can be modified to handle a general
frequency dependence.

The dependent variable p in (2) is replaced with U, which
is defined by '

ou Co

.
at 2 -

®)

with the assumption U(r,z) = U’(re, ze'’?), where ko =
w/cy and U’ is independent of ¢. Substituting (8) into (2) and
retaining leading-order terms, we obtain the following PE,
which is valid for r > rg :

U _ 1 (2Y_taav)
ar 2kg \ 922 p 0z Oz
+itk ~ ko)U — nBkoU. (9)

In the absence of the other operators on the right-hand side
of (9), the loss operator —nfBkoU acts over the range incre-
ment Ar as follows:

U(r, D) explikos) = U(r, 2) exp(ikos ~ nBkoAr)

pir.z,t) = U(r,2) exp(ikos)

as r—=r + Ar. 10

‘

223

The coefficient function U, which depends weakly on r and z,
is ignored. The loss operator is valid to leading order because
it is correct in the limit & — 0.

In the time domain, the Fourier transform is applied to
decompose the signal as follows:

u@s,z,t) = S ak, z, yexp(iks)dk (1)

utk,z,t) = 51; S u(s,z, t)exp(—iks)ds. (12)

It follows from (12) that i1/3t = O(e) and 361/3z = O(e'’?).
In (11), the field is written as a superposition of plane waves
each multiplied by a function depending weakly on ¢ and z.
A discrete loss operator analogous to (10) would act over the
time increment At as follows:

u(s,z,t) — S a(k,z,tyexp(iks — n8 | k | coAridk

as t ~*t+ Ar. (13)

Once again, the coefficient function of the plane wave is ig-
nored, and the loss operator is valid to leading order because
it is correct in the limit & — 0. Substituting (12) into (13)
and interchanging the order of integration, we obtain

nBcoAt S‘” u(s',z,t) ds’
x —w (MBCoAN? + (5* —5)?

uis,z,0

as =t + At. (14)

A continuous loss operator L is obtained by taking the limit
in (14) to obtain

Lu = lim [m S u(s’,z,t) ds

a0l x® J_o (qBcoAr? + (s° - s)?

u(s, z,)
YY) ] as

. 1B g" u(s’',z,0) ~ u@s,z,0n
= . (16
Lu = lim == | GBeoatf v v —sp &5+ U9
In going from (15) to (16), we have used the identity
nBcoAt r’ ds’ _
L —w (MBCOAIY? + (s —5)? I an

The limit in (16) exists as the Cauchy principal value of the
integral with At = 0.
Adding Lu to (7), we obtain the PWE

o (B 1)
a2 <6z2 p 9z 9z ds’+ (o =) 5
+ T)BCO S u(S',Z, t) - U(S,Z, t) dS'. (18)
r J. (s -5

This PWE differs from the NPE of [17] by the presence of the
density and attenuation terms and the absence of the nonlinear
and spreading terms. The integral operator appearing in (18)




—
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is of the Kramers-Kronig type {27). The approach we have
described can be generalized to handle an arbitrary complex
dispersion relation by replacing the function 98 | k | in (13)
by a complex function of k.

IV. NuMERICAL SoLuTiON OF THE PWE

The domain is discretized with grid spacings As, Az, and
At. The ocean surface at z = 0 is assumed to be pressure
release, and the signal is assumed to be trapped within I' =
0, Sma0) X (0, Zma) due to the moving frame and the lossy
bottom. Thus, the boundary condition ¥ = 0 is imposed on
dr'. The ocean depth is assumed constant over I'. This is a
valid leading-order approximation if range dependence is suf-
ficiently gradual.

We solve (18) numerically using the method of alternating
directions, which was used to solve the NPE [17] and requires
numerical methods for each of the following:

du du
E*‘(C-Cg)a-o 19
u ¢ S“’ Fu 19p du ,
a2 ) (azz p 9z 3z ds 20)

ds’. an

a_“ — M r’ u(s’,z,t) — u(s,z, 0
ot LS - (s’ —S)z

The Lax-Wendroff scheme [28] may be applied to solve the
first-order hyperbolic equation (19). The Courant-Friedrichs-
Lewy (CFL) condition,

max | ¢ —¢o | At < As (22)

must be satisfied for stability.
With the imposed boundary conditions, (20) is equivalent

to

2 u

co sdt

0. 23
322 p dz 0z 23)

Galerkin’s method with linear test functions is applied to dis-
cretize depth dependence. The depth grid points are defined by
Z; = iAz. The basis functions ¥;(z) vanish for | z ~z; | > Az,
increase linearly from 0 to 1 over z,., < z < gz;, and de-
crease from 1 to Q over 2; < Z < Zj4.

The basis functions can be used to approximate a function
by a piecewise linear function with exact agreement at the
grid points. We define u;(s,t) = u(s,z;,t) and p; = p(z;)
and obtain

u(s, 2,0 =Y uils,N¥i(2) (24)
i
p(2) =Y, pi¥i(2). (25)
Galerkin’s method discretizes depth dependence in (23) by

using (24) and (25) and requiring that the following hold for
alli:

Pu 108p0u 2 u
g *,(Z)[*a? - ; E 52 + C_o m] dz = 0. (26)
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Substituting (24) and (25) into (26) we obtain

- Fia
A+ B— =
utBaa =0 @7
where the vector #(s, ¢) contains the values of u at the depth
grid points and A4 and B are tridiagonal matrices with entries

Aiicy = 2-pii0ic12 (28)
Aii = pio10i-12 + Pis10ip12 — 4 (29)
Aiisl = 2=pir1%is12 (30)

1 .
— if pi = pis

Pi
iy =
A log(pi.1) — log(p:) if pi # Pist (31)
Pi+t — Pi
(Az)?
= 2
B;i- 3 (32)
2
5, = @40 33)
’ 3C0
AZ 2
Biiv1 = (3c: . (34)

We define the grid points s; = jAs and t, = nAt and
Wj, = U(s;,t,). Integrating (27) over (5;,S;41) X (tn, tn41)
using the trapezoid rule where necessary, we obtain

AsAt |, - - -
TA(“jH,n-H +Uipgn+ Ujpy + Ujp)

+B(l-‘ti+|.n+l - l-‘.j+l.n - l-‘.j.n-H + ﬁ;") =0. (35

In the case ¢ = ¢y, p = py, and 8 = 0, (18) reduces to (20).
In this situation, energy flows from s = sy, to s = 0 due to
geometric dispersion. This physical consideration implies that
(35) must be applied by sweeping from s = sy, to s = 0,
which results in the scheme

Miljnyy = bjnss (36)
M=B- “"TA’ 4 37)
- AsAt - -
bjns1 = TA(uj+l.n+l + Ui 1n t Ujp)

+B('-‘Ti+l.n+l - ﬁ.j+l.n + 'Z[n) (38)

The loss operator is defined by (14) as Ar — 0. Thus,
(14) is used to solve (21). The CFL condition (22) and ac-
curacy considerations result in 8 = nBcoAt/As <€ 1.(In the
example below, § = 0.023.) Thus, the kernel in (14), which
approximates a delta function, is nearly singular at s' = s.
The integral over (s, — As/2, s; + As/2) is approximated

by replacing u(s, z, f) with u(s;, 2, f) and integrating the kernel
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analytically to obtain

oo
i~j+ 3
u(sl’z’t) - % E “(Si,z,’)[tan-l<——~—6——2>

oL 1
I —J]—- =
—tan_' (——6———2—>] . (39)

For i # j, the terms in the sum are of order 6/(i — j)*.
Thus, the sum may be truncated making the loss operator
numerically efficient.

V. THEe INnTIAL FIELD

The PWE is not valid near the sound source because it is
derived from a singular perturbation problem. Both du /3¢ and
1/r fail to be O(e) in a boundary layer near r = 0. In the
boundary layer and within the angle ¢ of the horizontal, rays
are not significantly affected by the weak refraction of the
ocean. Thus, the PWE may be initialized near the source at
t =1 with

1 d_ 1 S
prz.0) = - F(t )7 F(t ~
where d% = r’ + (z £ 20)’.

This solution is valid for small 7 and e because refraction in
the ocean is negligible over short ranges, and the propagating
rays, which travel within the angle ¢ from horizontal, do not
intersect the ocean bottom near the source. It breaks down
for large r because refraction in the ocean is significant over
large ranges, and propagating rays from the source eventually
reflect from the ocean bottom.

The numerical method used to solve the PWE requires a
continuously differentiable source function with compact sup-
port. A source function that approximates a delta function
would be useful because it can be used to approximate the
impulse response of the ocean. The Gaussian source function
G,() = exp [—(vt)2]. which was used in [17], has these
properties.

Since the Gaussian source function approximates a delta
function, it is useful for convolution. A given source function
may be approximated by

Fn=Y a"G,(t-1"

n

(40)

4

provided » is sufficiently large. The coefficients " are de-
termined by requiring the approximation to be exact at the
points ¢, which do not necessarily correspond to the grid
points {, and may be spaced irregularly. This constraint gives
the following system of equations:

m+q

)

n=m-q

Fq™y = aG,@m —"). 42)
The matrix corresponding to this system of equations is re-
duced to the 2g + 1 diagonals centered about the main diag-
onal, where g is a small integer, due to the fact that G,(f)
decays rapidly away from ¢t = 0. In some situations, the
approximation given by (41) might be more useful than the
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Fourier decomposition for approximating broadband source
functions because the Gaussian itself is a broadband source
function.

V1. PWE BENCHMARK

The Gaussian source G,(f) with v = 150 s~! is placed
at Zo = 75 m in an ocean in which ¢ = ¢g = 1500 m/s.
Ocean depth is 200 m for r < 4 km, linearly decreasing from
200 to SO m over 4 km < r < 8 km, and 50 m for r > 8
km. In the sediment, ¢ = 1600 m/s, p = 1.5 g/cm?, and
B8 = 0.5 dB/A. The grid spacings are At = 2.5 m/cy, As = 1
m, and Az = 1.5 m with sy = 400 m and Zmax = 300
m. An absorbing layer 150 m thick is added below z = Zg,y
over which B increases to prevent reflections. The grid T is
initialized with the leading Gaussian front at r = 350 m and
s = 300 m.

Fig. 1 contains a sequence of contour plots of the acoustic
pressure. The ocean bottom is marked with a solid horizontal
line. Solid contours represent p > C; dashed contours rep-
resent p < 0. The leading front is located about 100 m to
the left of the leading end of the grid. The reflection coeffi-
cient at the ocean surface is —1. The reflection coefficient at
the ocean bottom is approximately —1 for small-angle prop-
agation. Thus, the fronts that trail the leading front and have
reflected from the ocean surface and bottom are composed
of alternating solid and dashed contours. The signal is essen-
tially confined to I', which was assumed in the derivation of
the numerical solution.

The leading front is accompanied below the interface by an
evanescent wave. This is analogous to the evanescent portions
of the normal modes for the time-harmonic problem. The re-
flected fronts also exhibit this feature. The evanescent tails
penetrate deeper into the water for these fronts, which propa-
gate at higher angles. In analogy, the length of the evanescent
tails of the normal modes increase with propagation angle. In
the upslope region, the evanescent tails grow extremely long
and energy penetrates into the sediment. This behavior is anal-
ogous to the coupling of energy from the discrete spectrum
into the continuous spectrum for the time-harmonic problem
as described in {5]. The tails begin to subside in length after
the top of the slope is reached.

A time-harmonic source with w =
mated by

100 =s~' is approxi-

t - (n + i)‘l’
sin (wf) =1.267 Y, (~1)"G, —— . @)

n

The constants @" = 1.267 - (-1)" and " = (n + D)x/w
were determined by taking ¢ = 1. It is evident from Table I
that (43) gives an accurate approximation. By superposition,
the time-harmonic response p.,, is approximated by

t - (n + %)w
Pew(t) =1.267 3, (~1)"p ———1 (44)
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Fig. 1. Sequence of snapshots of the acoustic pressure p for a Gaussian
point source. Solid lines represent p > 0. Dashed lines represent p < 0.
Ocean surface is at the top boundary. Solid horizontal line is the ocean
bottom. Signal propagates toward the right.
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TABLE 1
APPROXIMATION OF A SINUSOID BY GAUSSIANS.
TWO GAUSSIANS USED PER CYCLE CENTERED
AT THE MAXIMA AND MINIMA OF
THE SINUSOID

t(ms) sin (w?) 2a"G,(t — ")

0.5 0.1564 0.1564
1.0 0.3090 0.3089
LS 0.4540 0.4539
20 0.5878 0.5877
2.5 0.7071 0.7071
3.0 0.8090 0.8091
35 0.8910 0.8912
4.0 0.9511 0.9513
4.5 0.9877 0.9880
5.0 1.0000 1.0003

ol

h i

TRANSMISSION LOSS(aB)
0.0

70.0

e
8 Y Y
0.0 2.0 4.0 6.0 8.0 10.0
RANGE (KM)
Fig. 2. Benchmark calculation for 50 Hz source. Data for solid curve is

generated from a PWE (time-domain) calculation followed by a convolution
to approximate the CW response. Data for dashed curve is generated with
a PE (frequency-domain) calculation.

where p is the response to the Gaussian. Fig. 2 contains a
plot of transmission loss at the receiver depth z, = 25 m
calculated using (18) with (44) and using (9). The excellent
agreement demonstrates the accuracy of the PWE, the starting
field, and the numerical solution.

VII. CoNcLusIiONS

A model that handles low-frequency, bottom-interacting
pulse propagation in the ocean has been derived, and a new
initial field has been considered. The PWE accounts for varia-
tions in sound speed, density, and attenuation. The attenuation
is assumed to depend linearly on frequency in the sediment, al-
though the approach can be generalized to handle an arbitrary
dependence. Cylindrical spreading is handled analytically, an
additional improvement in the model. A numerical solution
for the PWE was derived, and the accuracy of the asymp-
totics, numerics, and starting field was demonstrated with a
benchmark. The numerical solution is based on the approach
of [17]. However, the solution has been simplified, and meth-
ods designed for linear problems have been implemented. The
results presented here should apply to the TDPE.

Further development of the PWE is needed. Future studies

—j
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to extend the present work might compare the PWE with the
TDPE and compare run-times for these models and frequency-
domain models. It would be advantageous to extend the model
to handle wide-angle propagation, which is known to be im-
portant from frequency-domain studies. The causal dispersion
law {27) that corresponds to the linear attenuation law should
be implemented into the model because dispersion is known to
have a significant effect on propagation in solids [23], and tae
acausal linear attenuation law sometimes gives unsatisfactory
predictions for bottom-interacting propagation in the ocean
[251.
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